APPENDIX A
A sample lock-free linked list used by DHASH

DHASH is modular, and its buckets can be implemented
by using existing wait-free or lock-free set algorithms that
implement the API shown in Algorithm 1. This appendix
takes Michael’s classic linked list [1] as an example and
illustrates the modifications to a lock-free set algorithm
before it can be integrated into DHASH. The pseudocode
for the resulting algorithm is presented in Algorithm 7,
with all modifications being highlighted with comments in
bold fonts (i.e., U1, U2, etc.). Except for these modifications,
Algorithm 7 is the same as Michael’s original algorithm.
Note that for ease of presentation, the cas primitive in
this appendix returns True when it succeeds; otherwise, it
returns False.

(1) The RCU mechanism [2] is used for memory recla-
mation. The memory reclamation mechanism presented
in Michael’s original algorithm (hazard pointers) leads to
performance penalties due to the memory fence instructions
in traversing the list. Therefore, in DHASH, we chose RCU.
Moreover, when the RCU mechanism is properly applied,
no ABA issue [3] can arise, such that the tag field in each
node can be saved [1]. Specifically, in Algorithm 7, before
operations holding references to a node have completed,
the RCU mechanism prevents other concurrent delete op-
erations from reclaiming (and then reusing) the node (lines
151 and 178). Moreover, the use of call_rcu() prevents delete
operations from being blocked by prior unfinished lookup
operations [2].

(2) Logically removed nodes are allowed to be inserted
into the list. Recall that while the function ht_rebuild() is
distributing a node «, a concurrent delete operation can find
o via the global pointer rebuild_cur and delete o by setting
the LOGIC_RM bit of the next field of . One approach
to solving this interaction is letting the function list_insert()
check the LOGIC_RM bit when inserting « into the new hash
table by using an atomic double-compare-single-swap (dcss)
primitive (discussed below). That is, list_insert() inserts a
node into the hash table, only if the node’s LOGIC_RM bit
has not been set. To avoid the overuse of the dcss primitive,
however, we adopt another approach that is optimistic and
lightweight. Specifically, list_insert() first inserts o into the
list, and then pro-actively removes o from the list if its
LOGIC_RM bit is found to be already set. This approach
works because once the LOGIC_RM bit is set, it remains,
and subsequent invocations of the function list_find() will
help remove « out of the list, rather than returning « as the
search result (discussed in detail in Section 4.5).

To achieve this, when setting the next field of « to point
to its successor node (line 124, i.e., U1), we only change its
ptr field, but save its flag field (line 118). Since concurrent
delete operations may be logically deleting «, the helper
function set_next_pointer() uses a loop that repeatedly sets
the next field by using a CAS instruction. Since once the
LOGIC_RM bit is set, it remains, the cas instruction fails at
most once.

One consequence of allowing the insertion of logically
removed nodes is that it can cause a concurrent list_find()
operation, which is required to first help physically remove
the node, to start over. Even though the list_find() operation

Algorithm 7: Lock-free, ordered linked list for
DHASH.

109
110
111

112

113
114

struct node {long key; <node *ptr, flag> next};
struct list {node *head};
struct snapshot {node **prev, *cur, *next};

#define logically_removed(htnp) (htnp->next & LOGIC_RM)

set_snapshot(snapshot *ss, node **prev, *cur, *next) {
Ss->prev := prev; ss->cur := cur; ss->next := next;

115 }

116
117
118

19 }

120

121
122
123
124
125
126
127
128
129
130
131

132

133
134
135
136
137

138
139
140
141

142

143
144
145
146
147
148
149
150
151
152
153
154
155

156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

set_next_pointer(node *htnp, <new_ptr, new_flag>) {

do { <old_ptr, old_flag> := htnp->next;

} while (cas(&htnp->next, <old_ptr, old_flag>, <new_ptr,
old_flag>));

list_insert(list *list, node *htnp) {
Local variables : snapshot ss;
while (true) {
if (list_find(list, htnp->key, &ss) = SUCCESS)
return -EEXIST;

return SUCCESS;

}
}

list_insert_dcss(ht **ht_new, *old1, list *list, node *htnp) {
Local variables : snapshot ss; int ret;
while (true) {

if (list_find(list, htnp->key, &ss) = SUCCESS)

return -EEXIST;
htnp->next := <ss.cur, 0>;
ret := dess(ht_new, old1, ss.prev, <ss.cur, 0>, <htnp, 0>);
*/

if (ret = SUCCESS) return SUCCESS;

else if (ret = -EADDRI1) return -EADDRI1;
}
}

list_delete(list *list, long key, long flag) {

Local variables : snapshot ss; node *cur, *next;

while (true) {

if (list_find(list, key, &ss) != SUCCESS)
return -ENOENT;

cur := ss.cur; next := ss.next;

if (lcas(&cur->next, <next.ptr, 0>, <next.ptr, flag>))
continue;

if (cas(ss.prev, <cur.ptr, 0>, <next.ptr, 0>))
if(logically_removed(cur))

call_rcu(cur, free_node);
else list_find(list, key, &ss);
return SUCCESS;

}
}

list_find(list *list, long key, snapshot *ss) {

try_again:

prev := &list->head;

<cur_ptr, prev_flag> := *prev;

while (frue) {

if (cur_ptr = NULL) {
set_snapshot(ss, prev, NULL, NULL);
return -ENOENT;

}

<next_ptr, cur_flag> := cur_ptr->next;
ckey := cur_ptr->key;
if (*prev = <cur_ptr, 0>) goto try_again (line 157);
if (cur_flag) {
if (ckey > key) {
set_snapshot(ss, prev, cur_ptr, next_ptr);
‘ return ckey = key ? SUCCESS : -ENOENT;
}
prev := &cur_ptr->next;
}
else{ /» LOGIC_RM/IN_HAZARD has been set.
if (cas(prev, <cur_ptr,0>, <next_ptr,0>))
if (logically_removed(cur_ptr))
call_rcu(cur_ptr, free_node);
else goto try_again (line 157);

/*

}

<cur_ptr, prev_flag> := <next_ptr, cur_flag>;

}

/*

/* U4

/* U5

/* U6

u7

set_next_pointer(htnp, ss.cur); /* Ul «/
if (cas(ss.prev, <ss.cur, 0>, <htnp, 0>)) {

if (logically_removed(htnp)) /* U2 %/

list_find(list, htnp->key, &ss); /% U2 %/

u3

*/

Local variables :node **prev; node *cur_ptr, *next_ptr; long ckey;

*/

*/

is still non-blocking because the number of nodes inserted
by ht_rebuild() is limited, this can cause an increased tail
latency. To address this issue, after successfully inserting the
node « into the list, the function list_insert() pro-actively
checks whether o has been logically removed, and if so,
invokes list_find() to physically remove o from the list (lines
126 - 127, ie.,, U2). This guarantees that the number of
deleted nodes not yet removed never exceeds the maximum
number of concurrent threads operating on the list.

(3) A variant of list_insert() that supports the double-
compare-single-swap (dcss) primitive is provided. Recall
that DHASH stops inserting nodes into the old hash table
once rebuild operations are in progress. Instead, it inserts
nodes into the new hash table, to avoid inserting duplicate
nodes (discussed in detail in Section 4.6).

To that end, we implement the function list_insert_dcss(),
a variant of list_insert(), that allows us to perform an insert
operation only when the ht_new field is equal to NULL,
which implies that no rebuild operations are in progress.
That is, the function [ist_insert_dcss() complies with the
following sequential specification:

Definition 1: The function [list_insert_dcss() returns
-EADDRI if rebuild operations are in progress (line 139,
i.e., U4); otherwise, it returns SUCCESS if the node is
successfully inserted into the list, and -EEXIST if such
a node already existed in the list.

Specifically, the function [ist_insert_dcss() is similar to
list_insert(), except that the linearization point of a successful
list_insert() operation is replaced with Harris et al.’s lock-free
double-compare-and-single-swap (dcss) primitive [4] (line
137, i.e., U3). The dcss primitive, which is implemented from
normal cas instructions and a helping mechanism, takes five
arguments: two addresses, two expected values, and one
new value, and can atomically (1) read the two memory
addresses, (2) check if they contain the expected values, and
(3) if so, write the new value into the second address.

(4) The function list_delete() takes a third parameter
flag, which specifies the bit to be set in logical deletion
(line 147, ie., U5). This argument is either LOGIC_RM
or IN_HAZARD. Correspondingly, when a node has been
physically removed out of the list, list_delete() first checks
its flag field before reclaiming the node (line 150, i.e., U6).
If flag is set to LOGIC_RM, the node memory is reclaimed.
Otherwise, the node is in its hazard period (i.e., a rebuild
operation is referencing to this node via the global pointer
rebuild_cur, and will insert this node into the new hash
table), such that the node memory will not be reclaimed by
list_delete(). Similarly, since the function list_find() may help
concurrent delete operations to physically remove nodes
from the list, it needs to first check that the node has been
logically-removed, before reclaiming the node memory (line
177,1i.e., U7).

(5) Wrapper functions are required when accessing the
next fields of list nodes. One consequence of using the dcss
primitive is that the value stored in the next field of every
node is instead a dcss descriptor [4], which encapsulates the
original value by shifting it to the left by one bit. Therefore,
to read (resp. store) the original value from (resp. to) the
next field, we need to use a pair of wrappers (desc_2_ptr()
and ptr_2_desc()) which first perform a corresponding shift
operation, and, in some rare cases, help a dcss operation [4].

2

The two wrappers are lightweight (please refer to the full
paper for optimizations). The use of them, however, requires
some programmer effort. Take the pseudocode shown in
Algorithm 7 as the example, the wrappers are used on lines
117, 118, 124, 125, 126, 136, 137, 147, 149, 159, 165, 167, and
176 (13 lines of code in total). For ease of presentation, we
omit them in the pseudocode, and refer the readers to the
source code of DHASH, which will be open-sourced.

Correctness

We provide only informal proof that Algorithm 7 has the
desired properties of a non-blocking linked list to be inte-
grated into DHASH, with the following lemmas indicating
the proof roadmap.

Lemma 7. The functions list_find(), list_delete(), and
list_insert(), when invoked by the reqular hash table operations
(ht_lookup(), ht_delete(), and ht_insert()), are exactly the same
as Michael’s original algorithm [1], and hence are linearizable to
the sequential specification of standard set object.

Proof. The function ht_delete() invokes list_delete() on lines
70 and 85, passing a third argument LOGIC_RM. By in-
specting the pseudocode for list_delete(), it is easy to see
that in this case, list_delete() performs the same as Michael’s
original algorithm. Similarly, the function ht_insert() invokes
list_insert() on line 103. Since the node to be inserted into
the list is a newly-allocated one, it is guaranteed that its
LOGIC_RM bit has never been set. Therefore, list_insert()
performs the same as the original algorithm. Moreover,
list_find(), which is invoked by ht_lookup() on lines 54 and
64, may help the rebuild operation to physically remove a
limited number of nodes in hazard period out of the list
(line 176). Except that, list_find() performs the same as the
original algorithm. O

Lemma 8. The function list_insert_dcss() is linearizable and
complies with the specification of the insert operation defined in
Definition 1.

Proof. Similar to the function list_insert(), list_insert_dcss()
consists of a loop that repeatedly performs a lookup op-
eration and the dcss instruction until either dcss succeeds
(line 138), or a duplicate node is found (line 135). The only
difference is that list_insert_dcss() can fail because a rebuild
operation has started (line 139). In this case, it returns an
error message -EADDRI, indicating that a rebuild operation
has started and ht_insert() needs to start over. O

Lemma 9. The functions list_delete() and list_insert(), when
invoked by rebuild operations, can remove (resp. insert) a node
from (resp. into) the list, without changing the abstract state of
DHASH.

Proof. Recall that the abstract state of DHASH can be defined
as the node set H, and when rebuild operations are in
progress, H is defined as the union of (1) the non-logically-
removed nodes in both the old and the new hash tables, and
(2) the non-logically-removed nodes that are referenced by
the rebuild_cur pointers (discussed in detail in Section 5).
The function ht_rebuild() invokes list_delete() on line 33,
passing a third argument IN_HAZARD. By inspecting the
code, it is easy to see that in this case, list_delete() atomically
sets the IN_HAZARD bit of the node (line 147), and then

the node will be removed from the list (line 149 or 176). On
the other hand, Lemma 1 guarantees that concurrent lookup
operations can always find the node via the global pointer
rebuild_cur. That is, H still holds the node.

The function ht_rebuild() invokes list_insert() on line 37,
and there are two cases.

(1) The node to be inserted may have been logically re-
moved by a concurrent delete operation that found the
node via the global pointer rebuild_cur (line 79). In this
case, the delete operation has linearized, and the node
has been removed from H (discussed in Section 4.5).
Note that once a node’s LOGIC_RM bit is set, it remains,
and no concurrent lookup operations can return this
node as the search result. For example, list_insert()
keeps the LOGIC_RM bit while inserting this node
into the list (line 124). Moreover, after the node has
been successfully inserted into the list, list_insert() pro-
actively removes the node by invoking list_find() (line
127).

(2) Otherwise, Lemma 1 guarantees that the global pointer
rebuild_cur has pointed to the node before inserting it
into the list. That is, this node has been in H.

Overall, when list_insert() is invoked by ht_rebuild(), the
node set H and the abstract state of DHASH do not change.
O

REFERENCES

[1] M. M. Michael, “High performance dynamic lock-free hash tables
and list-based sets,” in SPAA, 2002.

[2] P. McKenney, “Introduction to RCU,” http://www.rdrop.com/
~paulmck/RCU/, 2020, [Online; accessed 9-May-2019].

[3] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[4] T. Harris, K. Fraser, and I. Pratt, “A practical multi-word compare-
and-swap operation,” in DISC, 2002.

